Measuring representational distances – the spike-train metrics approach
نویسندگان
چکیده
A fundamental problem in studying population codes is how to compare population activity patterns. Population activity patterns are not just spatial, but spatiotemporal. Thus, a principled approach to the problem of the comparison of population activity patterns begins with the comparison of the temporal activity patterns of a single neuron, and then, to the extension of the scope of this comparison to populations spread across space. Since 1926 when Adrian and Zotterman reported that the firing rates of somatosensory receptor cells depend on stimulus strength, it has become apparent that a significant amount of the information propagating through the sensory pathways is encoded in neuronal firing rates. However, while it is easy to define the average firing rate for a cell over the lengthy presentation of a time-invariant stimulus, it is more difficult to quantify the temporal features of spike trains. With an experimental data set extracting a time-dependent rate function is model dependent since calculating it requires a choice of a binning or smoothing procedure. [email protected] [email protected]
منابع مشابه
A New Class of Metrics for Spike Trains
The distance between a pair of spike trains, quantifying the differences between them, can be measured using various metrics. Here we introduce a new class of spike train metrics, inspired by the Pompeiu-Hausdorff distance, and compare them with existing metrics. Some of our new metrics (the modulus-metric and the max-metric) have characteristics that are qualitatively different from those of c...
متن کاملQuantifying Neurotransmission Reliability Through Metrics-Based Information Analysis
We set forth an information-theoretical measure to quantify neurotransmission reliability while taking into full account the metrical properties of the spike train space. This parametric information analysis relies on similarity measures induced by the metrical relations between neural responses as spikes flow in. Thus, in order to assess the entropy, the conditional entropy, and the overall in...
متن کاملA new framework for Euclidean summary statistics in the neural spike train space
Statistical analysis and inference on spike trains is one of the central topics in the neural coding. It is of great interest to understand the underlying structure of given neural data. Based on the metric distances between spike trains, recent investigations have introduced the notion of an average or prototype spike train to characterize the template pattern in the neural activity. However, ...
متن کاملSpike train metrics.
Quantifying similarity and dissimilarity of spike trains is an important requisite for understanding neural codes. Spike metrics constitute a class of approaches to this problem. In contrast to most signal-processing methods, spike metrics operate on time series of all-or-none events, and are, thus, particularly appropriate for extracellularly recorded neural signals. The spike metric approach ...
متن کاملTowards statistical summaries of spike train data.
Statistical inference has an important role in analysis of neural spike trains. While current approaches are mostly model-based, and designed for capturing the temporal evolution of the underlying stochastic processes, we focus on a data-driven approach where statistics are defined and computed in function spaces where individual spike trains are viewed as points. The first contribution of this...
متن کامل